3.306 \(\int \sec ^2(e+f x) (a+b \sec ^2(e+f x))^p \, dx\)

Optimal. Leaf size=72 \[ \frac{\tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^p \left (\frac{b \tan ^2(e+f x)}{a+b}+1\right )^{-p} \text{Hypergeometric2F1}\left (\frac{1}{2},-p,\frac{3}{2},-\frac{b \tan ^2(e+f x)}{a+b}\right )}{f} \]

[Out]

(Hypergeometric2F1[1/2, -p, 3/2, -((b*Tan[e + f*x]^2)/(a + b))]*Tan[e + f*x]*(a + b + b*Tan[e + f*x]^2)^p)/(f*
(1 + (b*Tan[e + f*x]^2)/(a + b))^p)

________________________________________________________________________________________

Rubi [A]  time = 0.0641613, antiderivative size = 72, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {4146, 246, 245} \[ \frac{\tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^p \left (\frac{b \tan ^2(e+f x)}{a+b}+1\right )^{-p} \, _2F_1\left (\frac{1}{2},-p;\frac{3}{2};-\frac{b \tan ^2(e+f x)}{a+b}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]^2*(a + b*Sec[e + f*x]^2)^p,x]

[Out]

(Hypergeometric2F1[1/2, -p, 3/2, -((b*Tan[e + f*x]^2)/(a + b))]*Tan[e + f*x]*(a + b + b*Tan[e + f*x]^2)^p)/(f*
(1 + (b*Tan[e + f*x]^2)/(a + b))^p)

Rule 4146

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rule 246

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])/(1 + (b*x^n)/a)^Fr
acPart[p], Int[(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILt
Q[Simplify[1/n + p], 0] &&  !(IntegerQ[p] || GtQ[a, 0])

Rule 245

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*x*Hypergeometric2F1[-p, 1/n, 1/n + 1, -((b*x^n)/a)],
x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILtQ[Simplify[1/n + p], 0] && (IntegerQ[p
] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \sec ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^p \, dx &=\frac{\operatorname{Subst}\left (\int \left (a+b+b x^2\right )^p \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\left (\left (a+b+b \tan ^2(e+f x)\right )^p \left (1+\frac{b \tan ^2(e+f x)}{a+b}\right )^{-p}\right ) \operatorname{Subst}\left (\int \left (1+\frac{b x^2}{a+b}\right )^p \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\, _2F_1\left (\frac{1}{2},-p;\frac{3}{2};-\frac{b \tan ^2(e+f x)}{a+b}\right ) \tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^p \left (1+\frac{b \tan ^2(e+f x)}{a+b}\right )^{-p}}{f}\\ \end{align*}

Mathematica [A]  time = 1.03902, size = 71, normalized size = 0.99 \[ \frac{\tan (e+f x) \left (\frac{b \tan ^2(e+f x)}{a+b}+1\right )^{-p} \left (a+b \sec ^2(e+f x)\right )^p \text{Hypergeometric2F1}\left (\frac{1}{2},-p,\frac{3}{2},-\frac{b \tan ^2(e+f x)}{a+b}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]^2*(a + b*Sec[e + f*x]^2)^p,x]

[Out]

(Hypergeometric2F1[1/2, -p, 3/2, -((b*Tan[e + f*x]^2)/(a + b))]*(a + b*Sec[e + f*x]^2)^p*Tan[e + f*x])/(f*(1 +
 (b*Tan[e + f*x]^2)/(a + b))^p)

________________________________________________________________________________________

Maple [F]  time = 0.356, size = 0, normalized size = 0. \begin{align*} \int \left ( \sec \left ( fx+e \right ) \right ) ^{2} \left ( a+b \left ( \sec \left ( fx+e \right ) \right ) ^{2} \right ) ^{p}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)^2*(a+b*sec(f*x+e)^2)^p,x)

[Out]

int(sec(f*x+e)^2*(a+b*sec(f*x+e)^2)^p,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{p} \sec \left (f x + e\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^2*(a+b*sec(f*x+e)^2)^p,x, algorithm="maxima")

[Out]

integrate((b*sec(f*x + e)^2 + a)^p*sec(f*x + e)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b \sec \left (f x + e\right )^{2} + a\right )}^{p} \sec \left (f x + e\right )^{2}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^2*(a+b*sec(f*x+e)^2)^p,x, algorithm="fricas")

[Out]

integral((b*sec(f*x + e)^2 + a)^p*sec(f*x + e)^2, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)**2*(a+b*sec(f*x+e)**2)**p,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{p} \sec \left (f x + e\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^2*(a+b*sec(f*x+e)^2)^p,x, algorithm="giac")

[Out]

integrate((b*sec(f*x + e)^2 + a)^p*sec(f*x + e)^2, x)